Subdiffusive scaling limit of the random walk among random traps

Abstract:

To every x in \mathbb{Z}^d, we associate a positive real number τ_x. We consider a random walk on \mathbb{Z}^d, often called "Bouchaud's trap model", that is reversible for the measure with weights (τ_x). We assume that the (τ_x) are i.i.d. random variables. When these random variables are not integrable, the walk is "trapped" on sites where τ_x is very large. In this case, for $d > 2$, Barlow and Cerny (2010) proved that the random walk converges in law, after a subdiffusive scaling. Their proof is based on a coarse graining procedure, and require very delicate estimates on the transition probabilities. For $d > 4$, I will present an alternative proof of this result, based on the mixing properties of the environment viewed by the particle.