Tunneling of reversible condensed zero range processes on finite sets.

Abstract:

Let $r(x,y)$ be the jump rates of an irreducible random walk on a finite set S, reversible with respect to some probability measure m. For some $a>1$, let g be a function given by $g(k) = (k/k-1)^a$. We consider a zero range process on S in which a particle jumps from a site x occupied by k particles, to a site y at rate $g(k)r(x,y)$. Since g is decreasing, the dynamics is attractive in the sense that particles on sites with a large number of particles leave them at a slower rate than particles on sites with a small number of particles. Let N be the total number of particles. In the stationary state, as N goes to infinity, all particles but a finite number accumulate on one single site. In our work we investigate the dynamical aspects of this condensation phenomenon. We show that in the time scale $N^{(1+a)}$ the site which concentrates almost all particles evolves as a random walk on S whose transition rates are a multiple of the capacities of the underlying random walk.

This is a joint work with Claudio Landim.

Date of last change: Thu, 25 Nov 2010 17:47:06, by Le CHEN